Local Feature Selection in Text Clustering
نویسندگان
چکیده
Feature selection has improved the performance of text clustering. Global feature selection tries to identify a single subset of features which are relevant to all clusters. However, the clustering process might be improved by considering different subsets of features for locally describing each cluster. In this work, we introduce the method ZOOM-IN to perform local feature selection for partitional hierarchical clustering of text collections. The proposed method explores the diversity of clusters generated by the hierarchical algorithm, selecting a variable number of features according to the size of the clusters. Experiments were conducted on Reuters collection, by evaluating the bisecting K-means algorithm with both global and local approaches to feature selection. The results of the experiments showed an improvement in clustering performance with the use of the proposed local method.
منابع مشابه
A Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملA General Investigation on the Combination of Local and Global Feature Selection Methods for Request Identification in Telegram
Nowadays, the use of various messaging services is expanding worldwide with the rapid development of Internet technologies. Telegram is a cloud-based open-source text messaging service. According to the US Securities and Exchange Commission and based on the statistics given for October 2019 to present, 300 million people worldwide used telegram per month. Telegram users are more concentrated in...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملImproving the Dynamic Hierarchical Compact Clustering Algorithm by Using Feature Selection
Feature selection has improved the performance of text clustering. In this paper, a local feature selection technique is incorporated in the dynamic hierarchical compact clustering algorithm to speed up the computation of similarities. We also present a quality measure to evaluate hierarchical clustering that considers the cost of finding the optimal cluster from the root. The experimental resu...
متن کامل